00001
00002
00003
00004
00005
00006
00007
00008
00016 #ifndef quaternion_mul_h
00017 #define quaternion_mul_h
00018
00019 #include <cml/mathlib/checking.h>
00020 #include <cml/quaternion/quaternion_promotions.h>
00021
00022 namespace cml {
00023 namespace detail {
00024
00025 template < class CrossType, class Real > struct SumOp;
00026
00027 template < class Real > struct SumOp< positive_cross, Real > {
00028 Real operator()(Real a, Real b) const {
00029 return a + b;
00030 }
00031 };
00032
00033 template < class Real > struct SumOp< negative_cross, Real > {
00034 Real operator()(Real a, Real b) const {
00035 return a - b;
00036 }
00037 };
00038
00039 template < class Quat1_T, class Quat2_T >
00040 typename et::QuaternionPromote<
00041 typename Quat1_T::temporary_type, typename Quat2_T::temporary_type
00042 >::temporary_type
00043 QuaternionMult(const Quat1_T& q1, const Quat2_T& q2)
00044 {
00045 detail::CheckQuat(q1);
00046 detail::CheckQuat(q2);
00047
00048 typedef typename et::QuaternionPromote<
00049 typename Quat1_T::temporary_type, typename Quat2_T::temporary_type
00050 >::temporary_type temporary_type;
00051
00052 typedef typename temporary_type::value_type value_type;
00053 typedef typename temporary_type::order_type order_type;
00054 typedef typename temporary_type::cross_type cross_type;
00055
00056 typedef detail::SumOp<cross_type, value_type> sum_op;
00057
00058 enum {
00059 W = order_type::W,
00060 X = order_type::X,
00061 Y = order_type::Y,
00062 Z = order_type::Z
00063 };
00064
00065 temporary_type result;
00066
00067
00068 result[W] =
00069 q1[W]*q2[W] - q1[X]*q2[X] - q1[Y]*q2[Y] - q1[Z]*q2[Z];
00070
00071
00072 result[X] =
00073 sum_op()(q1[W]*q2[X] + q2[W]*q1[X], q1[Y]*q2[Z] - q1[Z]*q2[Y]);
00074
00075
00076 result[Y] =
00077 sum_op()(q1[W]*q2[Y] + q2[W]*q1[Y], q1[Z]*q2[X] - q1[X]*q2[Z]);
00078
00079
00080 result[Z] =
00081 sum_op()(q1[W]*q2[Z] + q2[W]*q1[Z], q1[X]*q2[Y] - q1[Y]*q2[X]);
00082
00083 return result;
00084 }
00085
00086 }
00087
00089 template<typename E1, class AT1, typename E2, class AT2, class OT, class CT>
00090 inline typename et::QuaternionPromote<
00091 typename quaternion<E1,AT1,OT,CT>::temporary_type,
00092 typename quaternion<E2,AT2,OT,CT>::temporary_type
00093 >::temporary_type operator*(
00094 const quaternion<E1,AT1,OT,CT>& left,
00095 const quaternion<E2,AT2,OT,CT>& right)
00096 {
00097 return detail::QuaternionMult(left, right);
00098 }
00099
00101 template<typename E, class AT, class OT, class CT, class XprT>
00102 inline typename et::QuaternionPromote<
00103 typename quaternion<E,AT,OT,CT>::temporary_type,
00104 typename XprT::temporary_type
00105 >::temporary_type operator*(
00106 const quaternion<E,AT,OT,CT>& left,
00107 QUATXPR_ARG_TYPE right)
00108 {
00109 return detail::QuaternionMult(left, right);
00110 }
00111
00113 template<class XprT, typename E, class AT, class OT, class CT>
00114 inline typename et::QuaternionPromote<
00115 typename XprT::temporary_type,
00116 typename quaternion<E,AT,OT,CT>::temporary_type
00117 >::temporary_type operator*(
00118 QUATXPR_ARG_TYPE left,
00119 const quaternion<E,AT,OT,CT>& right)
00120 {
00121 return detail::QuaternionMult(left, right);
00122 }
00123
00125 template<class XprT1, class XprT2>
00126 inline typename et::QuaternionPromote<
00127 typename XprT1::temporary_type, typename XprT2::temporary_type
00128 >::temporary_type operator*(
00129 QUATXPR_ARG_TYPE_N(1) left,
00130 QUATXPR_ARG_TYPE_N(2) right)
00131 {
00132 return detail::QuaternionMult(left, right);
00133 }
00134
00135 }
00136
00137 #endif
00138
00139
00140